
Non-Maximum Suppression for Object Detection
by Passing Messages between Windows

Rasmus Rothe1, Matthieu Guillaumin1, and Luc Van Gool1,2

1 Computer Vision Laboratory, ETH Zurich, Switzerland
{rrothe,guillaumin,vangool}@vision.ee.ethz.ch

2 ESAT - PSI / IBBT, K.U. Leuven, Belgium
luc.vangool@esat.kuleuven.be

Abstract. Non-maximum suppression (NMS) is a key post-processing
step in many computer vision applications. In the context of object de-
tection, it is used to transform a smooth response map that triggers many
imprecise object window hypotheses in, ideally, a single bounding-box for
each detected object. The most common approach for NMS for object de-
tection is a greedy, locally optimal strategy with several hand-designed
components (e.g., thresholds). Such a strategy inherently suffers from
several shortcomings, such as the inability to detect nearby objects. In
this paper, we try to alleviate these problems and explore a novel formu-
lation of NMS as a well-defined clustering problem. Our method builds
on the recent Affinity Propagation Clustering algorithm, which passes
messages between data points to identify cluster exemplars. Contrary
to the greedy approach, our method is solved globally and its parame-
ters can be automatically learned from training data. In experiments, we
show in two contexts – object class and generic object detection – that
it provides a promising solution to the shortcomings of the greedy NMS.

1 Introduction

Non-maximum suppression (NMS) has been widely used in several key aspects
of computer vision and is an integral part of many proposed approaches in detec-
tion, might it be edge, corner or object detection [1–6]. Its necessity stems from
the imperfect ability of detection algorithms to localize the concept of interest,
resulting in groups of several detections near the real location.

In the context of object detection, approaches based on sliding windows [2–4]
typically produce multiple windows with high scores close to the correct location
of objects. This is a consequence of the generalization ability of object detectors,
the smoothness of the response function and visual correlation of close-by win-
dows. This relatively dense output is generally not satisfying for understanding
the content of an image. As a matter of fact, the number of window hypotheses
at this step is simply uncorrelated with the real number of objects in the image.
The goal of NMS is therefore to retain only one window per group, corresponding
to the precise local maximum of the response function, ideally obtaining only
one detection per object. Consequently, NMS also has a large positive impact
on performance measures that penalize double detections [7, 8].

2 Rasmus Rothe, Matthieu Guillaumin, Luc Van Gool

(a) The top-scoring box
may not be the best fit.

(b) It may suppress
nearby objects.

(c) It does not suppress
false positives.

Fig. 1: Examples of possible failures when using a greedy procedure for NMS.
[NB: All our figures are best viewed in color.]

The most common approach for NMS consists of a greedy iterative proce-
dure [2, 3], which we refer to as Greedy NMS. The procedure starts by selecting
the best scoring window and assuming that it indeed covers an object. Then,
the windows that are too close to the selected window are suppressed. Out of
the remaining windows, the next top-scoring one is selected, and the procedure
is repeated until no more windows remain. This procedure involves defining a
measure of similarity between windows and setting a threshold for suppression.
These definitions vary substantially from one work to another, but typically they
are manually designed. Greedy NMS, although relatively fast, has a number of
downsides, as illustrated in Fig. 1. First, by suppressing everything within the
neighborhood with a lower confidence, if two or more objects are close to each
other, all but one of them will be suppressed. Second, Greedy NMS always keeps
the detection with the highest confidence even though in some cases another de-
tection in the surrounding might provide a better fit for the true object. Third,
it returns all the bounding-boxes which are not suppressed, even though many
could be ignored due to a relatively low confidence or the fact that they are
sparse in a subregion within the image.

As these problems are due to greediness and hard-thresholding, in this pa-
per we propose to consider NMS as a clustering problem that is solved globally,
where the hard decisions taken by Greedy NMS are replaced with soft penalties
in the objective function. The intuition behind our model is that the multiple
proposals for the same object should be grouped together and be represented by
just one window, the so-called cluster exemplar. We therefore adopt the frame-
work of Affinity Propagation Clustering (APC) [9], an exemplar-based clustering
algorithm, which is inferred globally by passing messages between data points.

However, APC is not directly usable for NMS. We need to adapt it to include
two constraints that are specific to detection. First, since there are false positives,
not every window has to be assigned to a cluster. Second, in certain scenarios
it is beneficial to encourage a diverse set of proposals and penalize selecting
exemplars that are very close to each other. Hence, our contributions are the
following: (i) we extend APC to add repellence between cluster centers; (ii) to
model false positives, we relax the clustering problem; (iii) we introduce weights

NMS for Object Detection by Passing Messages between Windows 3

between the terms in APC, and show how these weights can be learned from
training data.

We show in our experiments that our approach helps to address the limita-
tions of Greedy NMS in two different contexts: object class detection (Sec. 4)
and generic object detection (Sec. 5).

2 Related Work
NMS is a widely used post-processing technique in several computer vision ap-
plications. For edge, corner and interest point detection, its role is to find the
local maxima of a function defined over a pixel scale-space pyramid, and it is
common to simply suppress any pixel which is not the maximum response in its
neighborhood [1, 10].

Similarly, for object detection, many approaches have been proposed to prune
the set of responses that score above the detection threshold. The Viola-Jones de-
tector [4] partitions those responses in disjoint sets, grouping together responses
as soon as they overlap, and propose, for each group with enough windows, a
window whose coordinates are the group average. Recently, a more common
approach has been to adopt a greedy procedure [2, 3, 11] where the top-scoring
window is declared an object, then neighboring windows are removed based on a
hand-tuned threshold of a manually-designed similarity (distance between cen-
ters when the size ratio is within 0.5−2 in [2, 11]; relative size of the intersection
of the windows with respect to the selected object window in [3]). Most current
object category detection pipelines [12–14], but also generic object detection
ones [7], use such a greedy procedure. As explained in the introduction, a greedy
approach with manually-set parameters is not fully satisfactory.

Several alternatives have been considered. A first line of work considers the
detector response as a distribution, and formulates the goal of NMS as that
of finding the modes of this distribution. For instance, mean-shift for a kernel
density estimation [15] and mixtures of scale-sensitive Gaussians [16] have been
proposed. Although principled, these approaches still select only local maxima
and fail to suppress false positive detections.

A second line of approaches includes iterative procedures to progressively
remove extraneous windows. In [17], a re-ranking cascade model is proposed
where a standard greedy NMS is used at every step to favor sparse responses.
In [18], the authors also adopt an iterative procedure. From a base detector
model, a more powerful detector is built using local binary patterns that encode
the neighborhood of window scores in the target image. The procedure is iterated
several times until saturation of the detector. This is very similar to the idea of
contextual boosting [19]. These iterative procedures are rather time-consuming,
as they involve re-training object detectors at each iteration.

For the special case of object detection performed through voting, NMS can
be done implicitly by preventing a vote to be taken multiple times into account.
For instance, with Hough Forests [20–22], patches vote for the location of the
object center. The location with maximum response is selected as the object,
and the votes within a given radius that contribute to the selected center are
removed from the Hough space hence preventing double detections.

4 Rasmus Rothe, Matthieu Guillaumin, Luc Van Gool

The same idea applies to part-based voting for detection [23]. However, these
approaches are not generic and do not apply to every object detection framework.
In [24, 25], the authors propose to include repulsive pairwise terms into the search
for high-scoring windows, so as to avoid performing NMS as a post-processing
step. The search is performed using branch-and-bound techniques.

As mentioned earlier, Greedy NMS has the potential shortcoming of sup-
pressing occluding or nearby instances. Several works aim at solving this prob-
lem in particular. For the problem of pedestrian detection, [26] proposed to learn
detection models for couples of person. Unfortunately, this idea scales very un-
favorably with the number of elements in a group, and creates new problems for
NMS: what should be done when a double-detection and two single detections
are found nearby?

A related field of research generalizes the idea of NMS to the problem of
detecting multiple object classes at the same time. This is often referred to as
context rescoring [3, 27]. Those approaches explicitly model co-occurrence and
mutual exclusion of certain object classes, and can incorporate NMS and counts
for a given object class [27]. Several works go even further and also model scene
type and pixel-level segmentation jointly [28, 29].

To the best of our knowledge, our work is the first to view NMS as a
message-passing clustering problem. Clustering algorithms like k-means [30], k-
medoids [31] and spectral clustering [32] are not well suited because they return
a fixed number of clusters. However, the number of objects and therefore ideal
number of clusters is an unknown prior and thus should not have to be fixed
in advance. This inflexibility results in poor performance as shown in the ex-
periments. We overcome these limitations by building our approach upon Affin-
ity Propagation Clustering (APC), an exemplar-based clustering approach by
Frey [9]. APC has been applied to a variety of problems [33–36] and extended
in multiple ways. [37] uses hard cannot-link constraints between two data points
which should not be in the same cluster. Our repellence is much weaker and
hence more flexible: it penalizes only when two data points are simultaneously
cluster centers, resulting in an significantly different formulation than [37].

3 A Message-Passing Approach for NMS

We start in Sec. 3.1 by presenting Affinity Propagation Clustering (APC) [9]
using its binary formulation [38], which is the most convenient for our extensions.
In Sec. 3.2, we discuss how we have adapted APC for NMS with a novel inter-
cluster repellence term and a relaxation of clustering to remove false positives.
We show how the messages must be updated to account for these extensions.
Finally, in Sec. 3.3, we propose to use a Latent Structured SVM (LSSVM) [39]
to learn the weights of APC.

3.1 Affinity Propagation: Binary Formulation and Inference

Let N be the number of data points and s(i, j) the similarity between data points
i and j ∈ {1, . . . , N}. APC is a clustering method that relies on data similarities
to identify exemplars such that the sum of similarities between exemplars and
cluster members is maximized. That is, s(i, j) indicates how well j would serve

NMS for Object Detection by Passing Messages between Windows 5

as an exemplar for i, usually with s(i, j) ≤ 0 [9]. Following [38], we use a set
of N2 binary variables cij to encode the exemplar assignment, with cij = 1 if i
is represented by j and 0 otherwise. To obtain a valid clustering, the following
constraints must hold: (i) each point belongs to exactly one cluster, or equiva-
lently is represented by a single point: ∀i :

∑
j cij = 1; (ii) when j represents any

other point i, then j has to represent itself: ∃i 6= j : cij = 1 ⇒ cjj = 1. These
constraints can be included directly in the objective function of APC:

EAPC({cij}) =
∑
i,j

Sij(cij) +
∑
i

Ii(ci1, . . . , ciN) +
∑
j

Ej(c1j , . . . , cNj), (1)

where Sij , Ii and Ej have the following definitions:

Sij(cij) =

{
s(i, j) if cij = 1

0 otherwise,
(2)

Ii(ci1, ..., ciN) =

{
−∞ if

∑
j cij 6= 1

0 otherwise,
(3)

Ej(c1j , ..., cNj) =

{
−∞ if cjj = 0 and ∃i 6= j s.t. cij = 1

0 otherwise.
(4)

Here Ii enforces (i) while Ej enforces (ii). The self-similarity s(i, i) favors certain
points to be chosen as an exemplar: the stronger s(i, i), the more contribution
it makes to eq. (1).

The inference of eq. (1) is performed by the max-sum message-passing algo-
rithm [9, 38], using two messages: the availability αij (sent from j to i) reflects
the accumulated evidence for point i to choose point j as its exemplar, and
the responsibility ρij (sent from i to j) describes how suited j would be as an
exemplar for i:

αij =

{∑
k 6=j max(ρkj , 0) for i = j

min(0, ρjj +
∑
k 6∈{i,j}max(ρkj , 0)) for i 6= j

(5)

ρij = s(i, j)−max
q 6=j

(s(i, q) + αiq). (6)

3.2 Adapting Affinity Propagation for NMS

We use the windows proposed by the object detector as data points for APC.
The self-similarity, or preference to be selected as an exemplar, is naturally
chosen as a function of the score of the object detector: the stronger the output,
the more likely a data point should be selected. The similarity between two

windows is based on their intersection over union (IoU), as s(i, j) = |i∩j|
|i∪j| − 1.

Here the indices refer to the area of the windows. This expresses the degree of
common area they cover in the image compared to the total area covered which
is a good indicator of how likely they describe the same object. To perform
competitively, in the following subsections we will extend APC to better suit
our needs and present the contributions of this paper. The resulting processing
pipeline is depicted in Fig. 2.

6 Rasmus Rothe, Matthieu Guillaumin, Luc Van Gool

1. Detector Output 2. Similarity Space 3. Clustering 4. Final Proposals

Fig. 2: Illustration of our NMS pipeline. 1. Detector Output : the detector returns a set
of object window hypotheses with scores. 2. Similarity Space: the windows are mapped
into a similarity space expressing how much they overlap. The intensity of the node
color denotes how likely a given box is chosen as an exemplar, the edge strength denotes
the similarity. 3. Clustering : APC now selects exemplars to represent window groups,
leaving some windows unassigned. 4. Final Proposals: the algorithm then returns the
exemplars as proposals and removes all other hypotheses.

Identifying False Positives. False positives are object hypotheses that belong
in fact to the background. Therefore, they should not be assigned to any cluster
or chosen as an exemplar. This forces to relax constraint (i). To avoid obtaining
only empty clusters, this relaxation must be compensated by a penalty for not
assigning a data point to any cluster. We do this by modifying eq. (3):

Ĩi(ci1, ..., ciN) =

−∞ if

∑
j cij > 1

λ if
∑
j cij = 0

0 otherwise.

(7)

Note how this updated term in eq. (1) is equivalent to adding an extra back-
ground data point that has similarity λ to all the other data points and 0 self-
similarity. In the following, the term Ĩi will be weighted, hence we can set λ = −1
without loss of generality.

Inter-Cluster Repellence. In generic object detection the detector precision
is much lower compared to detectors trained for a specific object class. To still
achieve a high recall it is beneficial to propose a diverse set of windows that cov-
ers a larger fraction of the image. However by default, APC does not explicitly
penalize choosing exemplars that are very close to each other, as long as they
represent their respective clusters well. To encourage diversity among the win-
dows, we therefore propose to include such a penalty by adding an extra term
to eq. (1).

While this term will favor not selecting windows in the same neighborhood,
it will not preclude it strictly either. This will still allow APC to select multiple
objects in close vicinity. We denote by R =

∑
i6=j Rij(cii, cjj) the new set of

repelling local functions, where, for i 6= j:

Rij(cii, cjj) =

{
r(i, j) if cii = cjj = 1

0 otherwise.
(8)

In other words, we have added a new term for every pair of data points which is
active only if both points are exemplars. We penalize this pair by the amount of

NMS for Object Detection by Passing Messages between Windows 7

cijŜij

Ii

Ej

R̂ik

if i = j

∀ k 6= i

ρij αij

βij ηij
γik

φik

Fig. 3: The 6 messages passed between variables in our extension of Affinity Propaga-
tion are α, β, ρ, η, γ and φ.

r(i, j), a repellence cost. Again, we base the repellence cost between two windows

on their intersection over union, as r(i, j) = − |i∩j||i∪j| . Note that Rij and Rji refer

to the same local function. However we keep both notations for simplicity.

Weights and message passing. Linearly combining all the above local func-
tions gives us the following new objective function for APC:

ẼAPC = wa
∑
i

Sii + wb
∑
i 6=j

Sij + wc
∑
i

Ĩi + wd
∑
i<j

Rij +
∑
j

Ej . (9)

We have omitted the cij variables for the sake of clarity, and we have further
separated data similarities and self-similarities. Note that the local functions are
defined so that all weights are expected to be positive.

Weights are only added to the 4 finite terms and only their relative weight
matters for inference. Similar to the original APC, we perform inference, i.e.,
find the values of {cij} that maximize eq. (9) using message-passing. In short,
the new terms in eq. (9), especially the repellence ones, lead to new messages
to be passed between windows. For the sake of space, we show the factor graph
corresponding to eq. (9) and the full derivation of the 6 corresponding messages
in the supplementary material. We illustrate them in Fig. 3.

The 6 messages (α, β, ρ, η, γ and φ) are reduced to 4 (α, ρ, γ and φ) by using
substitution and integrating the weights back into the local functions. We view
the background data point as the N+1-th entry in the similarity matrix and can
thereby further simplify the derivation for the message passing. Then we have 2
messages for all variables cij :

ρij =

ŝ(i, i)−max
q 6=i

(ŝ(i, q) + αiq) +
∑
l 6=i φil for i = j

ŝ(i, j)−max(max
q 6∈{i,j}

(ŝ(i, q) + αiq), ŝ(i, i) + αii +
∑
l 6=i φil) for i 6= j,

(10)

αij =

{∑
k 6=j max(ρkj , 0) for i = j

min(0, ρjj +
∑
k 6∈{i,j}max(ρkj , 0)) for i 6= j.

(11)

Additionally, we have 2 messages essentially resulting from the new Rij term
which only exist between the subset {cii} of variables:

γik = ŝ(i, i) + αii −max
q 6=i

(ŝ(i, q) + αiq) +
∑

l 6∈{i,k}

φil (12)

φik = max(0, γki + r̂(i, k))−max(0, γki). (13)

Following the original message-passing algorithm for APC [9, 38], we initialize
all messages with 0. We then iteratively update the messages until convergence.

8 Rasmus Rothe, Matthieu Guillaumin, Luc Van Gool

3.3 Structured Learning for Affinity Propagation

We address now the problem of learning the weights wa, wb, wc and wd of eq. (9)
from training data so as to maximize the performance of the NMS procedure.
The training data consists of images with N object window hypotheses and K
ground-truth bounding-box annotations for the corresponding object category.
The best possible output {c∗ij} of APC for those ground-truth bounding-boxes
is to keep the proposal with the highest overlap for each ground-truth bounding-
box as long as its IoU is at least 0.5. All other proposal should be discarded.
This directly determines the target values c∗ii of all cii. However, correctly setting
target values for the remaining cij (i 6= j) is not straightforward, as we cannot
automatically decide which object was detected by this imprecise localization,
or whether this window is better modeled as a false positive. Hence, we treat
cij for i 6= j as latent variables. This splits the set of variables in two subsets
for each image n: yn = {cn11, cn22, ..., cnNN} are the observed variables, with their
target y∗n, and zn = {cn12, ..., cn1N , cn21, cn23, ..., cnN−1,N} the latent ones.

We can now rewrite our objective function for image n as:

ẼnAPC(yn, zn;w) = w>Ψn(yn, zn), where Ψn is the concatenation of the terms
in eq. (9) in a vector, and w = [wa, wb, wc, wd, 1]>. To learn w, we resort to
Structured-output SVM with latent variables (LSSVM) [39]. This consists of
the following optimization problem:

argminw∈RD,ξ∈Rn
+

λ

2
||w||2 +

∑
n

ξn

s.t. ∀n, max
ẑn

ẼnAPC(y∗n, ẑn;w) ≥ max
yn,zn

(
ẼnAPC(yn, zn;w) +∆(yn, y

∗
n)
)
− ξn,

(14)

where ξn are slack variables, and ∆ is a loss measuring how yn differs from
y∗n. This is equivalent to finding a w which maximizes the energy of APC for
the target variables y∗n, by a margin ∆, independent of the assignment of zn.
Following [39], we solve eq. (14) using the concave-convex procedure (CCCP) [40]
and the Structured-output SVM implementation by [41]. We define ∆:

∆(y, y∗) =
∑
i

ν[cii − c∗ii < 0] + π

(
1−max

obj

|i ∩ obj|
|i ∪ obj|

)
[cii − c∗ii > 0]. (15)

where ν ≥ 0 is the cost for not choosing a window as an exemplar although it is
the best candidate for one of the objects. When a box is chosen as an exemplar
even though it is not the best candidate it is considered as a false positive. This
is smoothly penalized by π ≥ 0 by considering the overlap with the ground-truth
object it most overlaps with. The values for π and ν are chosen depending on the
application, usually ν/π > 1. Using CCCP additionally implies that we are able
to perform loss-augmented inference (i.e., find (yn, zn) that maximizes the right-
hand side of the constraints in eq. (14)), and partial inference of zn (i.e., the left-

hand side of the constraint). For the left-hand side, argmaxẑ ẼAPC(y∗, ẑ;w) can
be computed directly. Given the cluster centers y∗n we just assign all other boxes
which are not cluster centers to the most similar clusters. For false positives,
this could also be the background data point depending on the current value for

NMS for Object Detection by Passing Messages between Windows 9

wc. This results in a valid clustering which maximizes the total similarity for the
given exemplars.

Concerning the right-hand side, we can easily incorporate ∆ as an extra term
in eq. (9), and use message passing to obtain the corresponding (yn, zn). When
incorporating the loss term into the message passing, only the similarity ŝ needs
to be modified, leading to ŝ∆:

ŝ∆(i, j) =

ŝ(i, j)− ν for i=j and cnii=1

ŝ(i, j) + π

(
1−max

obj

|i∩obj|
|i∪obj|

)
for i=j and cnii = 0

ŝ(i, j) otherwise.

(16)

4 Experiments on Object Class Detection

To compare the proposed exemplar based clustering framework to Greedy NMS,
we measured their respective performance for object class detection. We are
especially interested in the cases we presented in Fig. 1 where Greedy NMS fails,
and we will present insights why our proposed method handles these better.
A detailed analysis will address localization errors (Fig. 1a), close-by labeled
objects (Fig. 1b), precision as well as detections on background (Fig. 1c). This
is in line with Hoiem’s [42] in-depth analysis of the performance of a detector,
not only giving a better understanding of its weaknesses and strengths but also
showing that specific improvements are necessary to advance in object detection.

4.1 Implementation Details

In this section the clustering is applied to Felzenszwalb’s [3] (release 5) object
class detector based on a deformable parts model (DPM). Performance is mea-
sured on the widely used Pascal VOC 2007 [8] dataset composed of 9,963 images
containing objects of 20 different classes. We keep the split between training
and testing data as described in [3]. The DPM training parameters are set to
their default values. We keep all windows with a score above a threshold which
is determined for each class during training but at most 250 per image. The
similarity between two windows is based on their intersection over union, as
described in Sec. 3. As the score of the Felzenszwalb boxes p is not fixed to a
range, it is scaled to [−1, 0] by a sigmoidal function s(i, i) = 1

1+e−p − 1. The
presented results for APC are trained following Sec. 3.3 on the validation set.
For a fair comparison, the ratio ν/π was set to yield a total number of windows
similar to Greedy NMS.

4.2 Results

The results are presented in separate subsections that compare the performance
of APC and Greedy NMS with emphasis on the specific issues presented in Fig. 1.

Can APC provide better fitting boxes than Greedy NMS (Fig. 1a)?
Here we show that solving NMS globally through clustering can help to select
better fitting bounding-boxes compared to Greedy NMS. We look at the detec-
tion rate for different IoU thresholds with the object for detection. The upper
bound is determined by the detection rate of the detector when returning all
windows, i.e. without any NMS.

10 Rasmus Rothe, Matthieu Guillaumin, Luc Van Gool

0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

IoU

R
ec

a
ll

(a) bicycle

0.5 0.6 0.7 0.8 0.9

IoU

(b) chair

0.5 0.6 0.7 0.8 0.9

IoU

(c) horse

0.5 0.6 0.7 0.8 0.9

IoU

Upper bound

NMS

APC

(d) average

Fig. 4: Object class detection: IoU vs. recall for a selection of classes (a-c) as well
as the average across all (d). Our method consistently outperforms Greedy NMS for
different IoU thresholds.

Table 1: Object class detection: area under curve (AUC) for IoU vs. recall.
aeroplane bicycle bird boat bottle bus car cat chair cow diningtable

Upper bound 0.592 0.716 0.495 0.476 0.482 0.744 0.663 0.718 0.641 0.600 0.788

NMS 0.303 0.494 0.170 0.187 0.288 0.450 0.432 0.335 0.259 0.312 0.391
APC 0.426 0.589 0.297 0.260 0.333 0.552 0.498 0.432 0.361 0.426 0.556

dog horse motorbike person pottedplant sheep sofa train tvmonitor average

Upper bound 0.685 0.740 0.727 0.620 0.508 0.497 0.855 0.707 0.702 0.648

NMS 0.265 0.439 0.422 0.320 0.170 0.200 0.470 0.394 0.482 0.339
APC 0.336 0.540 0.522 0.418 0.303 0.322 0.584 0.533 0.510 0.440

(a) NMS Proposals (b) Cluster 1 (c) Cluster 2 (d) Cluster 3

(e) APC Proposals (f) Cluster 1 (g) Cluster 2 (h) Background

Fig. 5: Object class detection: qualitative results. These figures show an example of
the proposed windows. The colored box are the exemplars for the gray boxes. Upper
row: Greedy NMS. Lower row: APC.

The quantitative results in Fig. 4 confirm that APC recovers more objects
with the same number of boxes compared to Greedy NMS, especially performing
well when a more precise location of the object is required (IoU ≥ 0.7). We then
evaluated the area under the curve in Fig. 4 for each class separately (normalized
to 1), whose values are shown in Tab. 1. Here we perform better across all classes
with an increase between 0.17 for the diningtable class and 0.03 for the tvmonitor
class. On average the AUC can be increased from 0.34 to 0.44. Even though
selecting the right boxes from the output of the detector could have led up to
an AUC of 0.65, APC was still able to narrow the gap by almost a third.

This is also confirmed by the qualitative results in Fig. 5: whereas NMS
proposes several boxes for the same bike (e.g. (b), (c)) and even sometimes
proposes one box covering two objects (d), our method returns one box per bike
((f), (g)). These boxes are the exemplars of clusters only containing boxes which
tightly fit the bikes – the others are collected in the background cluster (h).

NMS for Object Detection by Passing Messages between Windows 11

0 0.2 0.4 0.6 0.8

aeroplane
bicycle

bird
boat

bottle
bus
car
cat

chair
cow

diningtable
dog

horse
motorbike

person

pottedplant
sheep

sofa
train

tvmonitor
average

Recall

(a) Performance on touching objects

0 0.2 0.4 0.6 0.8 1

aeroplane
bicycle

bird
boat

bottle
bus
car
cat

chair
cow

diningtable
dog

horse
motorbike

person

pottedplant
sheep

sofa
train

tvmonitor
average

Fraction of false positives

NMS

APC

(b) Suppressing false positives

Fig. 6: Object class detection: in-depth analysis. (a) compares the recall of Greedy
NMS and APC on pairs of objects (IoU > 0 between objects) – APC recovers signif-
icantly more of these rather difficult objects. (b) shows the fraction of false positives
– windows that do not touch any object: APC on average reduces the fraction of false
positives, with a significant reduction for some classes, i.e. bicycle, car, person.

Does APC avoid to suppress objects in groups (Fig. 1b)? Two (or more)
objects form a group if they at least touch each other (IoU > 0). Thus we remove
from the ground-truth the objects that do not overlap with any other object of
the same class, and compute the recall (with IoU = 0.5) on the remaining objects
for the same number of proposed windows as shown in Fig. 6a. On average APC
recovers 62.9% objects vs. 50.2% for Greedy NMS, with an increase of up to
31.7% for individual classes. Noting that these objects are especially difficult to
detect, APC is more robust at handling nearby detector responses. This is a
clear advantage of the proposed clustering based approach.

Can APC suppress more false-positives (Fig. 1c)? Already the qualitative
results in Fig. 5h suggest that the clustering relaxation proposed in Sec. 3.2
helps to remove extraneous boxes with low scores which do not describe any
object. For a quantitative analysis, we look again at the results of APC and
Greedy NMS when both return the same number of windows. Noting that both
post-processing algorithms are provided with exactly the same windows by the
detector as input, we now evaluate which method is better at suppressing false
positives. In this context we define false positives as all boxes which do not
touch any object (IoU = 0). These boxes are nowhere near detecting an object
as usually at least IoU ≥ 0.5 is required for detection. As shown in Fig. 6b
APC is able to reduce the fraction of false positives proposed from 95.5% for
NMS to 89.4% with consistent improvement across all classes. For some classes
like bicycle, car and person whose objects often occur next to each other, APC
shows significant false positive reduction of up to 21.6%, proposing more relevant
windows which also reflects in the recall in Fig. 4.

What is the precision of APC compared to NMS and k-medoids?
We now vary the ratio of the training parameters ν/π. APC returns a fixed
set of boxes, ranging from less than a box up to several hundreds per image
depending on the clustering parameters which are obtained through training

12 Rasmus Rothe, Matthieu Guillaumin, Luc Van Gool

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

o
n

(a) horse

0 0.2 0.4 0.6 0.8 1

Recall

(b) train

0 0.2 0.4 0.6 0.8 1

Recall

NMS

k-medoids

1-medoids

APC

(c) motorbike

Fig. 7: Object class detection: precision vs. recall. The precision-recall curves reveal
that APC performs competitively compared to Greedy NMS at a similar precision but
higher recall while significantly outperforming k-medoids.

Table 2: Object class detection: average precision NMS vs. APC
aeroplane bicycle bird boat bottle bus car cat chair cow diningtable

IoU 0.5
NMS 0.332 0.593 0.103 0.157 0.266 0.520 0.537 0.225 0.202 0.243 0.269
APC 0.298 0.511 0.108 0.107 0.130 0.369 0.428 0.197 0.149 0.168 0.235

IoU 0.8
NMS 0.101 0.198 0.091 0.023 0.096 0.135 0.123 0.021 0.057 0.048 0.036
APC 0.090 0.222 0.091 0.091 0.092 0.114 0.112 0.093 0.093 0.092 0.100

dog horse motorbike person pottedplant sheep sofa train tvmonitor mAP “mAP“

IoU 0.5
NMS 0.126 0.565 0.485 0.433 0.135 0.209 0.359 0.452 0.421 0.332
APC 0.129 0.579 0.432 0.363 0.116 0.143 0.259 0.449 0.175 0.267

IoU 0.8
NMS 0.004 0.061 0.126 0.106 0.006 0.030 0.105 0.044 0.144 0.078
APC 0.091 0.122 0.128 0.111 0.091 0.091 0.115 0.104 0.107 0.108

by setting this ratio for the specific application. These boxes, although they
cover the objects well, do not follow any kind of ranking as they altogether form
the result of a globally solved problem. Since AP is designed to measure the
performance of a ranking system, it is simply not appropriate for APC, as that
would require that one can select the best possible subset of the proposed boxes.
Still, we computed a proxy to AP by linearly interpolating the precision for
points of consecutive recall (which need not be consecutive values of the varied
parameter). This results in a “mAP“ for APC of 0.27 compared to a real mAP of
0.33 for greedy NMS as shown in Tab. 2. AP is mostly influenced by the highest
scored detections, so greedy NMS at an IoU of 0.5 is hard to beat with the same
underlying detector. However, as such, AP does not reward methods with more
precise object localizations than 0.5 and overall better recall. These are precisely
areas where greedy NMS can be improved, and therefore we resorted to a deeper
analysis. As a matter of fact, if we set a more difficult detection criterion of, e.g.,
0.8 IoU, then APC outperforms greedy NMS with a “mAP“ of 0.11 compared to
0.08. This is another aspect where APC shows superior performance compared
to greedy NMS. As each clustering has a well-defined precision and recall, we
can have a scatter plot to compare it to Greedy NMS. Fig. 7 shows that APC
achieves a similar precision at low recall but better recall at low precision.

We also compared APC to a k-medoids clustering baseline using the same
similarity as for APC. To account for the score of the proposals, the self-similarity
of the k selected cluster centers (varied from 1 to 10) was added to the overall cost
function to favor boxes with better scores. k-medoids leads to similar precision-
recall scatter plots as shown in Fig. 7. Additionally, we plot the precision-recall
curve for k = 1 (1-medoids) by ranking the cluster centers with their original
scores. As shown in Fig. 7 already in the case of 1-medoids many objects are re-
covered. However, the precision drops for larger recalls since it predicts k objects
in every single image. This lack of flexibility is a clear disadvantage of k-medoids
and other similar clustering algorithms compared to APC.

NMS for Object Detection by Passing Messages between Windows 13

≥ 2

1

0#
o
b

je
ct

s

0

0.5

1

P
(#
o|

#
w

)

≥ 2

1

0

of windows

#
o
b

je
ct

s

of windows # of windows

(a) bicycle (b) car (c) person

Fig. 8: Object class detection: predicting the number of objects. Greedy NMS approx-
imately returns the same number of boxes independent of the number of objects in the
image. Therefore the posterior P (# objects |# windows) remains uninformative about
the object count. In contrast, APC is very flexible and adjust the number of windows
being returned depending on how many objects there are in the image.

100 101 102 103

0.2

0.4

0.6

of windows

D
et

ec
ti

o
n

R
a
te

(a) 0.5 IoU

100 101 102 103

0.1

0.2

0.3

0.4

of windows

(b) 0.6 IoU

100 101 102 103
0

0.1

0.2

0.3

of windows

(c) 0.7 IoU

100 101 102 103
0

0.1

0.2

of windows

NMS 0.25

NMS 0.5

NMS 0.75

APC

APC Repellence

(d) 0.8 IoU

Fig. 9: Generic object detection: Greedy NMS requires to adopt the parameter for
suppression for different IoU thresholds to always perform competitively. In contrast,
APC performs consistently well, beating Greedy NMS especially for precise object
detection (IoU ≥ 0.7). Introducing a repellence helps to boost performance for less
precise object detection by enforcing diversity among the proposed windows.

Does APC better predict the number of objects in the image? Studying
the experimental results revealed that Greedy NMS approximately returns the
same number of boxes per image independent of whether there was an object in
the image. In contrast, for APC it greatly varied between images. Therefore, we
simply measured the posterior probability P (# objects | # windows). Fig. 8
depicts this probability for both Greedy NMS and APC for a selection of classes.
For Greedy NMS (upper row in Fig. 8) the number of proposed windows is mostly
uninformative regarding how many objects there are in the image. In comparison
for APC (lower row in Fig. 8), there is a strong correlation between the number
of windows proposed and the likelihood that there are 1 or more objects: given
the number of windows APC proposes we can estimate how many objects there
are in the image.

5 Experiments on Generic Object Detection
We apply APC to generic object detection which gained popularity in recent
years as a preprocessing step for many state-of-the-art object detectors [13, 14].
We use the objectness measure introduced by [43] which is the only one to
provide a probability p with the window it proposes, unlike [14, 44, 45].

5.1 Implementation Details
Performance is again evaluated on Pascal VOC 2007 where we split the dataset
in the same way as in [7] and used the classes bird, car, cat, cow, dog, sheep

14 Rasmus Rothe, Matthieu Guillaumin, Luc Van Gool

for training the objectness algorithm as well as the clustering and the remain-
ing 14 classes for testing. Images which had occurrences of both training and
testing classes were dropped and in contrast to [7] we also kept objects marked
as difficult and truncated. The self-similarity is based on the probability of con-
taining an object s(i, i) = p(i) − 1 and the similarity between boxes is defined
by the overlap. We sampled 250 windows with multinomial sampling which still
allows to recover a large fraction of the objects. As presented in [7], Greedy
NMS significantly improved the detection rate for objectness. This motivates
our experiments where we compare Greedy NMS against APC.

5.2 Results

After training APC, we compare its detection rate with Greedy NMS for different
IoU thresholds with the object. For APC we show the performance both without
and with repellence; for NMS we varied the threshold for suppression. Looking at
Fig. 9, we make 3 observations: (i) when proposing very few windows per image
(< 10) APC typically performs better than Greedy NMS. (ii) for an IoU ≥ 0.7
the standard NMS threshold of 0.5 performs significantly worse than APC. This
requires that Greedy NMS re-runs with a higher threshold for suppression. In
comparison our method is much more consistent across varying IoU . (iii) for
APC diversity can be enforced by activating the inter-cluster repellence which
avoids having cluster centers close-by each other. This boosts our performance
for IoU ≤ 0.6 by close to up to 5% from 42.9% to 47.5% for IoU = 0.5.

6 Discussion

We presented a novel clustering-based NMS algorithm based on Affinity Propa-
gation. We showed that it successfully tackles shortcomings of Greedy NMS for
object class and generic object detection.

Specifically we show that our method – whose parameters can be learned
automatically depending on the application – yields better fitting bounding-
boxes, reduces false positives, handles close-by objects better and is better able
to predict the number of objects in an image, all at a competitive precision
compared to Greedy NMS. Given that APC tries to find a global solution to the
NMS problem it is however computationally more complex and still relatively
slow taking approximately 1s to cluster 250 bounding-boxes. In the future, we
therefore plan to explore approximative solutions.

APC could also be expanded to multi-class object detection integrating con-
text and holistic knowledge. The newly introduced repellence could be based not
only on the overlap between the boxes but rather the similarity in appearance
expressing how likely the two windows cover the same object. In future work,
we want to learn the window similarity potentially including visual features
that may help to distinguish between multiple detections of the same object or
nearby objects. We are convinced that APC can be of interest for many other
areas where NMS is used, e.g. edge detection [1, 46].

Acknowledgement. The authors gratefully acknowledge support by Toyota.

NMS for Object Detection by Passing Messages between Windows 15

References

1. Canny, J.: A computational approach to edge detection. TPAMI 8 (6) (1986) 679–
698

2. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection.
CVPR. (2005)

3. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with
discriminatively trained part based models. TPAMI 32 (9) (2010) 1627–1645

4. Viola, P., Jones, M.: Robust real-time object detection. IJCV 57 (2) (2004) 137–154.

5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate
object detection and semantic segmentation. CVPR. (2014)

6. Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.H.S.: BING: Binarized normed gradients
for objectness estimation at 300fps. CVPR. (2014)

7. Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows.
TPAMI 34 (11) (2012) 2189–2202

8. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
pascal visual object classes (VOC) challenge. IJCV 88 (2) (2010) 303–338

9. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science
315 (5814) (2007) 972–976

10. Mikolajczyk, K., Schmid, C.: Scale & Affine invariant interest point detectors.
IJCV 1 (60) (2004) 63–86

11. Schneiderman, H., Kanade, T.: Object detection using the statistics of parts. IJCV
56 (3) (2004) 151–177

12. Cinbis, R.G., Verbeek, J., Schmid, C.: Segmentation Driven Object Detection with
Fisher Vectors. ICCV. (2013)

13. Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection.
NIPS. (2013)

14. Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective
search for object recognition. IJCV 104 (2) (2013) 154–171

15. Dalal, N.: Finding people in images and videos. PhD thesis, Institut National
Polytechnique de Grenoble. (2006)

16. Wojcikiewicz, W.: Probabilistic modelling of multiple observations in face detec-
tion. Technical report, Humboldt-Universität zu Berlin (2008)

17. Blaschko, M.B., Kannala, J., Rahtu, E.: Non Maximal Suppression in Cascaded
Ranking Models. Scandinavian Conference on Image Analysis (SCIA). (2013)

18. Chen, G., Ding, Y., Xiao, J., Han, T.X.: Detection evolution with multi-order
contextual co-occurrence. CVPR. (2013)

19. Ding, Y., Xiao, J.: Contextual boost for pedestrian detection. CVPR. (2012)

20. Razavi, N., Gall, J., Van Gool, L.: Backprojection revisited: Scalable multi-view
object detection and similarity metrics for detections. ECCV. (2010)

21. Barinova, O., Lempitsky, V., Kholi, P.: On detection of multiple object instances
using hough transforms. TPAMI 34 (9) (2012) 1773–1784

22. Wohlhart, P., Donoser, M., Roth, P. M., Bischof, H.: Detecting partially occluded
objects with an implicit shape model random field. ACCV. (2012)

23. Wu, B., Nevatia, R.: Detection and segmentation of multiple, partially occluded ob-
jects by grouping, merging, assigning part detection responses. IJCV 82 (2) (2009)
185–204

24. Blaschko, M.B., Lampert, C.H.: Learning to localize objects with structured output
regression. ECCV. (2008)

16 Rasmus Rothe, Matthieu Guillaumin, Luc Van Gool

25. Blaschko, M.B.: Branch and Bound Strategies for Non-maximal Suppression in
Object Detection. EMMCVPR. (2013)

26. Tang, S., Andriluka, M., Schiele, B.: Detection and tracking of occluded people.
BMVC. (2012)

27. Desai, C., Ramanan, D., Fowlkes, C.C.: Discriminative models for multi-class ob-
ject layout. IJCV 95 (1) (2011) 1–12

28. Ladicky, L., Sturgess, P., Alahari, K., Russell, C., Torr, P.H.: What, where and
how many? combining object detectors and crfs. ECCV. (2010)

29. Yao, J., Fidler, S., Urtasun, R.: Describing the scene as a whole: Joint object
detection, scene classification and semantic segmentation. CVPR. (2012)

30. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. Proceedings of the fifth Berkeley symposium on mathematical statis-
tics and probability. 1 (14) (1967) 281–297

31. Kaufman, L., Rousseeuw, P.: Clustering by means of medoids. Statistical Data
Analysis Based on the L1-Norm and Related Methods. (1987)

32. Von Luxburg, U.: A tutorial on spectral clustering. Statistics and computing. 17
(4) (2007) 395–416

33. Dueck, D., Frey, B.J.: Non-metric affinity propagation for unsupervised image cat-
egorization. ICCV. (2007)

34. Dueck, D., Frey, B.J., Jojic, N., Jojic, V., Giaever, G., Emili, A., Musso, G., Hegele,
R.: Using Affinity Propagation. RECOMB. (2008)

35. Lazic, N., Frey, B.J., Aarabi, P.: Solving the Uncapacitated Facility Location Prob-
lem Using Message Passing Algorithms. AISTATS. (2010)

36. Givoni, I.E., Chung, C., Frey, B.J.: Hierarchical Affinity Propagation. The 27th
Conference on Uncertainty in Artificial Intelligence (UAI). (2011)

37. Givoni, I.E., Frey, B.J.: Semi-Supervised Affinity Propagation with Instance-Level
Constraints. AISTATS. (2009)

38. Givoni, I.E., Frey, B.J.: A Binary Variable Model for Affinity Propagation. Neural
Computation 21 (6) (2009) 1589–1600

39. Yu, C.N.J., Joachims, T.: Learning structural svms with latent variables. ICML.
(2009)

40. Yuille, A.L., Rangarajan, A.: The concave-convex procedure. Neural Computation
15 (4) (2003) 915–936

41. Vedaldi, A.: A MATLAB wrapper of SVMstruct. (2011)
42. Hoiem, D., Chodpathumwan, Y., Dai, Q.: Diagnosing Error in Object Detectors.

ECCV. (2012)
43. Alexe, B., Deselaers, T., Ferrari, V.: What is an object? CVPR. (2010)
44. Manén, S., Guillaumin, M., Van Gool, L.: Prime Object Proposals with Random-

ized Prim’s Algorithm. ICCV. (2013)
45. Ristin, M., Gall, J., Van Gool, L.: Local context priors for object proposal gener-

ation. ACCV. (2012)
46. Dollar, P., Zitnick, C.L.: Structured Forests for Fast Edge Detection. ICCV. (2013)

